1. Practical MCMC

    • Buy now
    • Learn more
  2. Introduction

    • Welcome to the MCMC Course
    • What do the MC and MC in MCMC stand for?
    • What MCMC Enables
    • The reality of working with MCMC
    • Who's this course for?
    • What we'll cover
    • Lesson Feedback
    • Lesson Exercises
  3. Resources Library

    • Intuitive Bayes Discourse Community Invite
    • Github Repository and Code Access
    • Environment Installation with Anaconda
    • Optional Orientation: Github
    • Optional Orientation: Discourse
    • Optional Orientation: Podia
  4. Investigating Inference

    • Introduction
    • Basic Bayes
    • Conjugate Models
    • Grid Search
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  5. Markov Chain Monte Carlo Deep Dive

    • Introduction
    • MCMC Deep Dive
    • Introducing Metropolis Hastings
    • Introducing Hamiltonian Monte Carlo
    • MCMC in Practice
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  6. The MCMC Practioners Toolbox

    • Introduction
    • Diagnostics intuitions
    • Trace Plots
    • Rank Plots
    • R Hat
    • Autocorrelation and effective size
    • Divergences
    • Diagnostics in an end-to-end Bayesian workflow
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  7. Not So Random Topics

    • Introduction
    • Practical HMC Tuning
    • (Hierarchical) Reparamaterization
    • Changing the data
    • A Cornucopia of Samplers
    • Monte Carlo Standard Error
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  8. Final Notes

    • Congratulations!
  1. Products
  2. Course
  3. Section

Final Notes

  1. Practical MCMC

    • Buy now
    • Learn more
  2. Introduction

    • Welcome to the MCMC Course
    • What do the MC and MC in MCMC stand for?
    • What MCMC Enables
    • The reality of working with MCMC
    • Who's this course for?
    • What we'll cover
    • Lesson Feedback
    • Lesson Exercises
  3. Resources Library

    • Intuitive Bayes Discourse Community Invite
    • Github Repository and Code Access
    • Environment Installation with Anaconda
    • Optional Orientation: Github
    • Optional Orientation: Discourse
    • Optional Orientation: Podia
  4. Investigating Inference

    • Introduction
    • Basic Bayes
    • Conjugate Models
    • Grid Search
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  5. Markov Chain Monte Carlo Deep Dive

    • Introduction
    • MCMC Deep Dive
    • Introducing Metropolis Hastings
    • Introducing Hamiltonian Monte Carlo
    • MCMC in Practice
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  6. The MCMC Practioners Toolbox

    • Introduction
    • Diagnostics intuitions
    • Trace Plots
    • Rank Plots
    • R Hat
    • Autocorrelation and effective size
    • Divergences
    • Diagnostics in an end-to-end Bayesian workflow
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  7. Not So Random Topics

    • Introduction
    • Practical HMC Tuning
    • (Hierarchical) Reparamaterization
    • Changing the data
    • A Cornucopia of Samplers
    • Monte Carlo Standard Error
    • Lesson Recap
    • Lesson Feedback
    • Lesson Exercises
    • Lesson References
  8. Final Notes

    • Congratulations!

1 Lesson
    • Congratulations!